Logo do repositório
Comunidades & Coleções
Tudo no DSpace
Ficha Catalográfica
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Cavalcante, Vinícius Loureiro"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Uso de uma rede neural convolucional para detecção de covid-19 automática através de imagens de Raio-x
    (2023-12-22) Cavalcante, Vinícius Loureiro; Santos, Alyson de Jesus dos Santos; http://lattes.cnpq.br/5998752909180697; Santos, Alyson de Jesus dos; http://lattes.cnpq.br/5998752909180697; Santos, Lucèlia Cunha da Rocha; http://lattes.cnpq.br/2242046166554146; Fialho, Michaella Socorro Bruce; http://lattes.cnpq.br/9348859124436505
    This study aims to evaluate the effectiveness of using neural networks in the detection of COVID-19 through chest X-rays. Based on a literature review, the methodology for building the neural network will be defined, and it will be trained with data collected from reliable sources and analyzed to evaluate the accuracy of detection. The use of neural networks can be a promising and non-invasive alternative for the diagnosis of COVID-19, especially in regions where PCR tests are scarce or time-consuming. Additionally, the use of neural networks may offer advantages over other forms of diagnosis, such as computed tomography (CT), as chest radiographs are more widely available and less costly. However, it is important to consider the limitations and challenges encountered in using neural networks for this purpose, such as the lack of specificity in mild or asymptomatic cases and the need for quality equipment and trained professionals to interpret the images. This study aims to contribute to the advancement of COVID-19 diagnosis through non-invasive and effective methods, as well as to identify possible limitations and challenges in using neural networks for this purpose.
Instituto Federal de Educação, Ciência e Tecnologia do Estado do Amazonas
Coordenação geral de bibliotecas - cgeb.proen@ifam.edu.br
Diretoria de Gestão de tecnologia da informação - dgti@ifam.edu.br